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The generalized Brillouin theorem is used to construct an optimization procedure 
for MCSCF functions by iterative contracted CI calculations. Special attention is 
paid to the MO transformation step in each iteration. In this method the MCSCF 
calculation may easily be augmented by a restricted CI calculation involving a 
configuration set which is uniquely determined by the trial function. An applica- 
tion to the calculation of the potential energy surface for linear LiH 2 in the reaction 
LiH + H ~ L i  + H 2 leads to the conclusion that this restricted CI is necessary, in 
order to obtain satisfactory results for the potential energy barrier in this reaction. 
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1 .  I n t r o d u c t i o n  

Since it is difficult to obtain the necessary improvements over HF results by the 
straightforward CI method, there is a growing interest in the MCSCF method which 
optimizes the MO's in a multi-configuration wave function. We here present an 
MCSCF optimization method based on the generalized Brillouin theorem [ 1 ]. Two 
advantages of this method over effective one-electron operator methods [2] are 
that it is conceptually simple and that it is easy to augment such a calculation by 
an effective restricted, CI calculation. In Sect. 4 this method is applied to the calcula- 
tion of the potential energy surface for linear LiH2 in the region of interest for the 
exchange reaction 

LiH + H ~ Li + H e. 

2. Optimization Procedure 

Our method is a combination of a suggestion made by Hinze [3] and the method used 
by Grein [4]. 

The optimization consists of  the following steps: 

1) An AO basis {X} of dimension n is chosen and an orthogonal set of starting MO's 
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{4} is generated. This set is divided into subsets of doubly occupied, variably occupied 
and empty orbitals by defining 

{~ain ~  2}, {~v[0< n ~  2}, {t)eln~ = 0} (1) 

where n o is the occupation number of an MO in the MCSCF trial function q~o. The sets 
of occupation numbers and spin coupling schemes for the configurations q5 k (i.e. sym- 
metry adapted linear combinations of Slater determinants) are selected and ,Iz o is con- 
structed according to 

% = Z ak~k (2) 
k 

2) The coefficients ak in (2) are determined by a (small) e l  calculation. 

3) All possible singly excited states ggi] 

q'ii = (ci-~j - c i - . i ) %  (3) 

are constructed. Here Ci--,j is a transition operator in second quantization representa- 
tion [5]. This definition implies that we are working in a spin-restricted formalism. 
The "Brillouin states" qrij are unnormalized linear combinations of a (not necessarily 
orthogonal) set of configurations, which is uniquely determined by the set {qsk} in 
Eq. (2) and by the dimension of the MO basis m(rn <~ n). This set, augmented by the 
set {qbk} , will be denoted by {@1}- 

4) The H-matrix for the set {@l} is constructed and transformed to the basis {'I~ o, g~ij}. 

5) The expansion coefficients bij in 

gtB = bog~o + ~ bii"~i i (4) 
i<j 

are determined by solving the corresponding secular problem. 

Since we are working in a spin-restricted formalism, the Brillouin states are generally 
not mutually orthogonal (contrary to [3] ). For the order dB of the matrix to be 
diagonalized we have 

dB <~ lrn(m -- 1), (m ~< n). 

For the true MCSCF-MO's all coefficients bij in the eigenvector corresponding to the 
lowest eigenvalue vanish, because these MO's satisfy the generalized Brillouin 
theorem [ 1 ] 

(d~olHl~i]} = 0 (1 <~i,]<.m). (5) 

6) From the information contained in the CI coefficients bo and bii an orthogonal MO 
transformation matrix T is constructed in order to obtain a better approximation for 
the MCSCF-MO's in the next iteration by 

~' = ~ T. (6) 

Two methods to obtain T are discussed in the next section. 
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7) The set (~} is replaced by (t~'} and the procedure is repeated from 3) until con- 
vergence is obtained, i.e. I b ij I < t, 1 <~ i, j ~ m ,  where t is a certain threshold. 

8) The calculation may be completed by a CI calculation using the  set {Ol}: 

q~ct : Z alqbl �9 (7) 
1 

This set constitutes a useful subset of the full configuration set because of the following 
reasons: 

a) It may be expected to contain the most important singly, doubly and triply excited 
configurations with respect to the HF determinant, if ,I~ o contains the most important 
doubIy excited configurations. 

b) The number of independent parameters a t in Eq. (7) is generally much larger than 
the number of parameters bi] in Eq. (4), since roughly 

dl ~ dkdt3 

where dl and dk are ~he dimensions of the sets {Or} and {ok) respectively. Therefore 
~cI may be expected to lead to an appreciable energy lowering with respect to the 
MCSCF function G o (which is identical to q~B for the converged MCSCF-MO's, cf. Eq. 
(4)). 

c) The calculation of ~I'ci involves only an additional diagonalization, since the cor- 
responding H-matrix has already been calculated in step 4) of the optimization 
procedure. 

d) 'I,c~ has the same invariance properties under MO transformations as "P0. This may 
be seen as follows. The MO's belonging to the subset {~v} defined in Eq. (1) are 
uniquely determined by the MCSCF optimization, but the MO's in (~a} and (~e} are 
not. A transformation within the set {~e} corresponds to a transformation of those 
configurations in {Ol}, which have just one fie singly occupied. Since all single excita- 
tions with respect to the set {On} are present in {~), this set is closed under these 
transformations. An analogous argument holds for {~d}. Thus ~ o  is invariant under 
transformations which leave q% invariant. Since the individual MO's in the subset {~d} 
and {~} are not uniquely determined by our optimization procedure, this is a 
necessary condition to obtain results for 't~ci which are independent of the choice of 
starting MO's for the MCSCF optimization. 

3. The MO Transformation Step 

In step 5) of the optimization procedure the coefficients bij in Eq. (4) are used to generate 
the MO transformation matrix Tin Eq. (6). The coefficients a k in Eq. (2) are kept 
fixed in this step. In principle we would like to choose T such that the foUowing criterimn 
is satisfied 

(~![r  - -  x ] : r ; l ' , I z  B _ , ~ [ I ; )  minimal (8) 

where ,P~ is defined by 
t t 

% = ~ a~Ok (9) 
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q~ contains the improved MO's r  and S o may be varied by varying T. Since T is 
orthogonal, S o is normalized, and Eq. (8) is equivalent to 

( S s [ S  o) maximal. (10) 

The orthogonal transformation T in one-electron space corresponds to an orthogonal 
transformation T N in N-electron space, i.e. the space spanned by the full configuration 
set. Therefore we have 

6(SBISo) = 6(SB[TN[SO) = (SBI6TNISo) = 0 (1 1) 

for variations TN such that TN + ~ TN still corresponds to an orthogonal transformation 
T + 6T in one-electron space. 

Generally the relations between the matrix dements of T and TN are rather complicated, 
leading to a set of coupled Nth order equations. However, since the coupling between 
the M0 transformation and the coefficients ak is neglected anyway in this step, it will 
not be efficient to solve these equations exactly. In the following, two approximate 
methods are discussed, which have proved to be useful in practical applications. 

3.1. First-Order Method (A) 

Suppose we take 

T = aoI + A (12) 

where A is skew symmetrical, [aijl ~ 1. Then if we apply T to  {~} and expand S 0 to 
terms of first order in aij we obtain 

% =  o-l(aoSo + Z a#.%). (13) 
i<] 

From Eq. (6) it is clear that S o (apart from the normalization) may be identified with 
S B. Therefore, in order to make the transition from S B of Eq. (4) to So, we take 

Tq = aq = -Tji  = -b i j  (i < j) (14) 

i.e. the non-diagonal elements of T are identified with the coefficients bq of the un- 
normalized Brillouin states, as defined by Eq. (3). This result has also been found by 
Grein [4] from the convergence properties of several alternative procedures. Eq. (12) 
gives slightly better results than the method used by Grein, because his formula 
implies ao = 1 in Eqs. (12) and (13). The matrix T defined by Eq. (12) is generally not 
strictly orthogonal and this has to be corrected before we apply T to  {~}. For the 
orthogonalization the L6wdin method seems to be particularly suited, because it maxi- 
misses the overlap between non-orthogonaI and the orthogonalized MO's. In practice, a 
somewhat better rate of convergence is obtained with successive L6wdin and Schmidt 
orthogonalizations for the various subsets defined in Eq. (1). Method A is very simple 
to apply, but it has the disadvantage that it is difficult to see how the orthogonalization 
affects'the energy of the trial function, especially in cases where it is difficult to choose 
good starting MO's. Moreover, it may be shown that if there exists a T, such that 

t 

g% = TNSO = 'Ire (15a) 
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i .e. 

(~I'B - XI'ol• - ~o) = 0 (15b) 

then method A will not always lead to this transformation (see appendix for details). 

3.2. Density Matrix Method (B) 

The norm in N-electron space of Eq. (8) may be replaced by a norm in one-electron 
space 

(P(~B) - P(~ 'o ) IP ( "#B)  - P (~ 'o ) )  min ima l  (16) 

where P(gSB) and P(~o) are the one-electron spinless density functions of ~ and q~o 
respectively. Two reasons for choosing Eq. (16) are: 

a) Eq. (16) leads to linear conditions on the elements of 1", as will be shown below. 
b) If there exists a transformation T such that Eq. (15) holds, Eqs. (8) and (16) are 

equivalent, since in that case 

(xTX'tB - -  xYff;IxYffB - -  x I I ; )  = ( P ( X ~ r B )  - -  P ( f f f f ; ) I P ( ' ~ B )  -- P (~0) )  = 0. 

It will now be shown how Eq. (16) may be satisfied. By expressing the density 
functions in Eq. (16) in some arbitrary orthogonal one-electron basis (q~} 

p -= 2 e,,ij i i 
t l  

we obtain in terms of the density matrices P 

tr[P4~(~B) _p~(,q~;)] 2 minimal. (I7) 

If the configurations ~x in '#o are built from the set {~b} the elements of P4~(,#o) may 
be expressed in the form 

r~,ii(~I'o) = ('I"ol Q-, - i l ' ; "o)  = 2 2 axak' (~xlG-+]lq~'>. 
k k'  

These elements depend only on the coefficients a k and on the occupation numbers 
and spin coupling schemes of the set {chk}. Since these are kept fixed in the MO trans- 
formation step (cf. Eq. (9)) we have 

,(%) = (%). (18) 
With 

Pqj'('#B) = T fP~ (ff"B) T, 

Eq. (18) and using the orthogonality of T, it is easily verified that Eq. (16) is 
equivalent to 

tr [ TC P8 TPo] maximal (19) 

where PB -= P~ (~B) and Po - P~ (~o). 

Varying T in Eq. (19)yields 

tr [6 T~iPB TPo + TtPB6 TPo] = 0. (20) 
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The orthogonality of Tmay be conserved by restricting 6 T to 

T= TA (21) 

where A is an arbitrary skew symmetrical matrix. Substitution of Eq. (21) into Eq. 
(20) yields 

tr[A [Po, TtPsT] ] = 0. (22) 

Since Po and PB are symmetrical, the commutator in Eq. (22) is skew symmetrical. 
Since A is an arbitrary skew symmetrical matrix, Eq. (22) can only be satisfied if 

[Vo, ZCeB T] = 0. (23) 

Eq. (23) implies that Po and T'~PB T have a common set of eigenvectors. If the eigen- 
vectors and eigenvalues o fP  o and PB are denoted by T o, Ts, N O and NB respectively, 
it is easily verified that Eq. (23) is satisfied by 

T = T B T;  (24) 

and that the maximal value for Eq. (19) is obtained as 

tr [T o T?BPB T B T?oPo] = tr(NBNo). (25) 

In order to find the absolute maximum of Eq. (19), in constructing T the eigen- 
vectors in T o and TB must be ordered such that the corresponding eigenvalues in 
N o and N8 are ordered in the same way, i.e. 

No i ~< No/ if iVBi ~ IVBI. (26) 

Eq. (24) is consistent with the convergence criterium I bii I < t (1 ~< i, ] <<, m), for in the 
limit bii = 0 we have 

% = ~o, TB = To (27a) 

T = I, r  = ~ (27b) 

i.e. the MO's have converged if the Brillouin theorem Eq. (5) is satisfied. Generally 
Eq. (24) involves two diagonalizations in order to find the required MO transformation. 
The diagonalization o fP  0 involves only the set (r Since the solution is invariant 
under transformations of the sets {Ca} and {r PB need not be completely diagonalized. 
In practice, however, a full diagonalization of Pe is required because T is not uniquely 
determined unless Eq. (26) is used. 

The density matrix method has the disadvantage that the density function of 'I~B iS 
approximated in the mean by using the quadratic norm (16). This norm is not 
sensitive to variations in MO's with small occupation numbers in 'I%. This means that 
MO's occurring only in configurations with small coefficients in 'I% (i.e. the correla- 
tion orbitals) are given less weight than they should have, according to the energy 
criterium which has been replaced by Eq. (16) for the determination of'I%. Consequently 
this method gives non-optimal convergence for those orbitals which (especially in the 
first few iterations) change most. 
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Another disadvantage is the fact that there is not always a one-to-one correspondence 
between Eqs. (4) and (27b), i.e. there are cases for which Eq. (27b) holds identically 
(see appendix for details). This corresponds to the fact that Eq. (23) may be satisfied 
identically, i.e. ifPo and PB are unit matrices, T is not uniquely determined by Eq. 
(23) and diagonalization o fP  o and PB leads to Eq. (27b). 

Obviously the density matrix method does not converge in these cases. This 
applies especially to MCSCF functions consisting mainly of configurations with 
more than one singly occupied orbital, e.g. VB type calculations. By comparing 
the two methods for determining T described above for a number of test cases we 
come to the following conclusions. Although with the same starting vectors rather 
different paths in the orbital parameter space are followed both methods generally 
need about the same (small) number of iterations to reach convergence. Method B 
appears to be somewhat safer in the case of inaccurate starting vectors, but it also 
seems to be slightly slower. 

4. Results for Linear LiH 2 

Some calculations have been carried out for linear LiHa with the method described 
above. This system, to our knowledge, has not been treated before at the MCSCF or 
CI level of approximation. For one geometry (RLi  H = 3.1 a.u., RHH = 2.7 a.u.) in 
the saddle point region for the reaction 

LiH + H~-Li  + H 2 (28) 

the results of a number of MCSCF and CI calculations were compared. The MCSCF 
results for the energy barrier E(LiH2) - E(LiH + H), where E(LiH2) is the energy 
of the saddle point geometry, were also compared with SCF and CI results. 

As AO basis a split valence GTO basis was used, viz. Li(6, 2) ~ [3,2],  H(3) -+ [2]. 
The Li ls and H l s  exponents and contraction coefficients were taken from [6], 
whereas the Li 2s and 2/) exponents were partially optimized in LiH at RLitt = 4 a.u. 
with a2s = C~2p for each GTO. This was done because E(Li + Ha) -NE(LiH + H) and 
consequently the barrier height is rather sensitive to exponent variations in LiH. The 
Li inner shell MO was kept fixed to the SCF results, since this MO is not expected 
to affect the form of the potential energy surface appreciably. 

The full configuration set (with the Li inner shell MO doubly occupied) contains 
168 configurations. The results for various MCSCF and CI calculations with various 
MO basis sets for the fixed geometery are given in Table 1. The correlation energies 
are given in terms of the total correlation energy 

Eetorr = 0.03016 a.u. = 0.821 eV = 18.9 kcal/mol 

defined as the energy difference between the full CI result and the HF energy in this 
AO basis. The HF, MCSCF (set A, to be defined below), restricted CI (set {~t}) and full 
CI calculations were carried out for a large number of  points in the region of  interest 
for reaction (28). The results for the barrier heights and saddle point geometries 
are given in Table 2. 
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Table 1. Correlation energies for LiH 2 (RLi H = 3.1 a.u., RHH = 2.7 a.u.) 

Method Conf. Set n (Conf.) MO-Set zXE (% of Etcorr) 

HF HF 1 HF 0 
CI A 3 HF 5 
CI B 3 HF 8 
CI C 4 HF 9 
CI HF + s a 20 HF 29 
CI A + s a 48 HF 57 
CI HF + d a 79 HF 61 
MCSCF A 3 MCSCF 62 
MCSCF C 4 MCSCF 74 
INO A + s a 48 INO (HF) c 86 
CI (r l, A }b 43 MCSCF 88 
INO A + s a 48 INO (MCSCF) c 90 
CI HF + s + d a 98 HF, INO, MCSCF 98 
CI full " 168 HF, INO, MCSCF 100 

a s and d stand for all singly and doubly excited configurations respectively. 
b {~l, A }is the set {q~/} generated from set A (see text). 
c the MO-sets in parentheses are the starting MO's. 

Table 2. Barrier heights (zSZ 2) and saddle point geometries for LiH + H ~--Li + Hz 

Method zXE(a.u.) R LiH(a.u.) R HH(a.u.) 

HF(q~ 1 ) 0.0101 3.30 2 60 
MCSCF (set A) 0.0094 3.38 3.09 
CI (~I,A} 0.0032 3.30 3.27 
CI (full) 0.0029 3.30 3.25 

For  the MCSCF calculat ions several selections f rom the fol lowing conf igura t ion  set 

have been  used 

~1 = [1 ] ' 2  231 

�9 2 = h I  1 4 4 3 [  (29) 

�9 3 = 6-1/2{2i 1 ]-2 4 3 [ - - [ 1  ] - 2 4 3 1 -  hl 1 2 4 3 [ }  

~54= 6-1/2(2t 1 ].2 5 3 [ - [ 1  ] . 2 5  3 [ -  I1 1 2 531}.  

The HF  de te rminant  ~I~ 1 is dominan t  at all geometr ies  considered.  For  the reactant  

LiH or p roduc t  H 2 the MO's  ~z  and ~4 are the bonding  and ant ibonding orbitals 

respectively.  With this choice  d~ 2 ensures a qual i tat ively correct  dissociation behaviour  

in to  individual atoms.  ~3 and (b 4 are only impor tan t  in the saddle po in t  region and 
may  therefore  be expec ted  to affect  the barrier height.  The spin coupl ing schemes o f  

~a  and cI) 4 are chosen such that  they  are or thogonal  to the Brillouin states 'I~24 and 

~2s ,  def ined wi th  respect  to the full set {q)k} o f  Eqs. (29),  which involve the  same 

occupa t ion  numbers  as ~3 and q54. 
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In the set A = (dOk[i'c = 1,2, 3} only one correlation orbital is involved, viz. ~4- This is 
a restriction, because the mixing of d~ 1 with q52 or q53 separately leads to different 
forms for this MO. Within the set B = (qSklk = 1, 2, 4} there is also a restriction, i.e. the 
correlation orbitals ~4 and ~s are assumed to be orthogonal. A function without 
these restrictions, i.e. a function containing the occupation numbers of set B with 
non-orthogonal correlation orbitals may be represented in an orthogonal MO basis 
by set C = (q~kik = 1, 2, 3, 4~ The results for these sets are as follows (zXE = percentage 
of the correlation energy Ector~). For the fixed geometry (Table 1) all sets give poor 
results with HF - MO's (z3Z ~ = 5-9%). After the MCSCF optimization set A gives 2 ~  = 
62%, set B leads to a highly divergent iterative process and set C gives zhE = 74%. The 
divergence in the calculation with set B is caused by the fact that ~b 2 and q53 compete 
with each other in lowering the energy. Apparently the restriction in set A is less 
severe in this case than the restriction in set B, even though set B contains a larger 
number of variational parameters than set A. Although the performance of set A 
seems to be quite impressive, the result for the barrier height (Table 2) is only slightly 
better than the HF result, indicating that this set contains primarily intramolecular 
correlation. Since it is very unlikely that set C gives significantly better results for 
the barrier height, tihe MCSCF method with the set {q~k} of Eqs. (29) is unsatisfactory 
in this respect. 

The MCSCF-MO's were also used for restricted CI calculations with the set (q5l} cor- 
responding to MCSCF function A. This set (qst, A ) contains 43 configurations and 
yields 88% of the correlation energy at the fixed geometry. With (Schmidt ortho- 
gonalized) HF-MO's this configuration set gives only 57% of the correlation energy. 
With MCSCF-MO's the barrier height is found to be only 0.0003 a.u. = 0.2 kcal/mol 
too high (cf. Table 2). This corresponds to a barrier height of 31% of the HF result 
and to a barrier height lowering with respect to the HF result of 96% of the full 
C1 result. The saddle point geometry is also well predicted by this restricted CI 
calculation. Since these results are much better than the MCSCF results, we see that 
our method for restricted CI calculations with the set (qbl} as defined in Sect. 2 leads 
to much better agreement with full CI results than a simple MCSCF calculation. Also, 
by comparing the correlation energy contributions and the lowering of the barrier 
heights for the MCSCF and restricted CI calculation respectively, it may be seen that 
the intermolecular correlation contributions are relatively better taken care of in the 
restricted C1 calculation than in the MCSCF calculation. It is, however, clearly difficult 
to separate inter- and intramolecular effects in this case. 

The calculations for the fixed geometry were also compared with INO calculations [7] 
with a fixed configuration set, similar to the set (q~l, A }. Owing to program restrictions 
we had to include some extra configurations into this set, leading to a set of  48 con- 
figurations. These calculations appear not to lead to unique results, as might have 
been expected from the fact that the INO method does not use T as defined in Eq. 
(24) for the MO transformation step. After a number of  iterations the energy reaches 
a minimum and after that the process diverges. I f  the energy minimum is taken as 
the final energy, the result appears to depend on the choice of the starting MO's. Thus 
we find zXE = 86% and zXE = 90% for HF and MCSCF-MO's respectively. This problem 
is less serious in a large CI calculation e.g. including (b i and all single and double excitations 
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(98 configurations). However, in this case the result turns out to be insensitive to the 
choice of MO's, since HF, MCSCF and INO-MO's all lead to the same result (AE = 98%). 

5. Conclusions 

We have shown that the spin-restricted MCSCF optimization method based on the 
generalized Brillouin theorem for an orthogonal MO-basis leads to an iterative process 
with satisfactory convergence properties. The rate of  convergence depends in most 
cases only slightly on the method used for the MO transformation step whereas in 
extreme cases the two methods considered bellave quite differently. From the configura- 
tion set chosen for the trial function a useful configuration set for restricted CI calcula- 
tions may be generated, which has been proved to give much better results than a 
simple MCSCF calculation for the characteristics of the potential energy surface for 
the exchange reaction 

L i H + H ~ - L i + H  2. 
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Appendix 

The performance of the two methods for choosing T in Eq. (6) considered above if 
Eqs. (15) are satisfied may conveniently be compared by considering a simple (and 
therefore rather extreme) example. 

We choose 

G0 = 2-1/2[lab [ - labl] (A1) 

and from Eqs. (3), (4) and (9) we find, confining our attention for simplicity to the 
mixing of the orbitals a and b, 

X~tab = 21/2 [ [ b b [ -  laal] 

xp B = boq% + bab q~ab (A2) 

~I' o = cos 2 a ~  o + �89 sin 2aqZab. 

Eqs. (15) may now be satisfied by choosing a such that 

tg2~ = 2bab/bo. 

The first-order substitution method leads to 

tg a = badb o. 

This is only a good approximation to the exact result for small values of a. 

The density matrix method is formally correct in this case. However, for the above 
example it may easily be shown that it does not work in practice, since Po and PB 
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are both unit matrices in this case. Therefore Eq. (23) is identically satisfied and 
consequently a cannot be determined from Eq. (24). 

This result for the density matrix method may be generalized as follows. 

For any function 

~It0 = ] i=~I1 ,~i ~ (A3) 

where | is a linear combination of  spin products and the set (~} is an orthogonal set 
of  space functions of  dimension n, we have 

Po = PB = I. (a4)  

This result is independent of  the coefficients bij in Eq. (4). For the proof  of  Eq. (A4) 
the commutation rules for the excitation operators C/__, i and the anti-Hermitian property 
of  the operator Ci~.j  - Cj__, i in Eq. (3) may be used. Since it is straightforward but 
somewhat lengthy it will not be reproduced here. 
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